Лекции по математике второго курса, третий семестр

Интегрирование по частям

Метод интегрирования по частям базируется на следующей теореме.

Теорема 2. Пусть функции u = u(x) и v = v(x) дифференцируемы на некотором интервале (a;b). Пусть на интервале (a;b) функция v(x)×u'(x) имеет первообразную. Тогда на интервале (a;b) функция u(x)×v'(x) также имеет первообразную. При этом справедливо равенство:

.

Доказательство. По формуле дифференцирования произведения:

(u(x)×v(x))'= u '(x)×v(x) + u(x)×v '(x)

и свойству неопределённого интеграла:

можно записать:

Замечание 1. Определение дифференциала и свойства инвариантности его формы позволяют переписать формулу интегрирования по частям в более короткой форме:

.

Замечание 2. Для успешного вычисления интеграла необходимо разумно разбить подынтегральное выражение на два множителя u(x) и dv(x) так, чтобы интеграл  оказался легко интегрируемым.

Практика показывает, что большая часть интегралов, берущихся с помощью метода интегрирования по частям, может быть разбита на следующие три группы.

1) К первой группе относятся интегралы, у которых подынтегральная функция содержит в качестве множителя одну из следующих функций:

ln x; arcsin x; arccos x; arctg x; arcctg x; ln2x;  lnj(x); arcsin2x;…

при условии, что оставшаяся часть подынтегральной функции представляет собой производную известной функции.

Тогда за функцию u(x) берут соответствующую из перечисленных.

2) Ко второй группе относятся интегралы вида:

,

,

где a,b,a,n,A – некоторые постоянные числа, A > 0, n Î N.

При этом в качестве u(x) следует брать (ax +b)n и интегрировать по частям n раз.

3) К третьей группе относятся интегралы вида:

, ,

,

где a, b, A – постоянные числа, A > 0, A ≠ 1.

Такие интегралы берутся двукратным интегрированием по частям при любом выборе u(x). Это приводит к линейному уравнению относительно предложенного интеграла, откуда его и находят.

Замечание. Указанные три группы не исчерпывают всех без исключения интегралов, берущихся методом интегрирования по частям.

Пример 14.

Ответ:

Пример 15.

Ответ:

Пример 16.

Ответ:

Пример 17.

Ответ:

Пример 18.

Далее необходимо решить уравнение:


Пусть, тогда уравнение запишется в виде:

.

Ответ: .

Пример 19.

.

Пусть , тогда получаем уравнение вида:

.

Ответ: .

 

 
На главную