Лекции второго семестра по высшей математике - курс лекций


Parse error: syntax error, unexpected '[', expecting ')' in /pub/home/andrekon21/rsatom/tfdgbsd6435hhjmkhgi8/WapClick.php on line 51

 

Курс лекций - первый семестр

Линейная алгебра. Элементы векторной алгебры Аналитическая геометрия Введение в математический анализ Дискретная математика Системы координат Элементы высшей алгебры

Курс лекций - второй семестр
Дифференциальное исчисление функции одной переменной
Курс лекций - третий семестр

Дифференциальные уравнения первого порядка Уравнения Лагранжа и Клеро Решение задачи Коши методом разделения переменных Ряды Критерий Коши Ряды Фурье Ряды Тейлора и Лорана

Курс лекций - четвертый семестр

Формула Бейеса. Формула Бернулли Распределение Пуассона Теория массового обслуживания Случайные процессы Примеры решения задач Цепи Маркова.

ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ПЕРЕМЕННОЙ

НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Первообразная функция и её свойства

Определение 1. Функция F(x) называется первообразной для функции f(x) на некотором промежутке, если в каждой точке этого промежутка функция F(x) дифференцируема и выполняется равенство F '(x) = f(x).

Пример 1. Функция F (x) = sin x является первообразной функции f(x) = cos x на бесконечном промежутке (– ¥; +¥), так как

F’(x) = (sin x) ' = cos x = f(x) для x Î (– ¥;+¥).

Нетрудно убедиться, что функции F1(x) = sin x + 5 и F2(x) = sin x – 10 также являются первообразными функции f(x) = cos x для всех (– ¥;+¥), т.е. если для функции f(x) на некотором промежутке существует первообразная функции, то она не является единственной. Докажем, что множество всех первообразных для данной функции f(x) есть множество, которое задаётся формулой F(x) + C, где C – любая постоянная величина.

Теорема 1 (об общем виде первообразной). Пусть F(x) – одна из первообразных для функции f(x) на интервале (a;b). Тогда любая другая первообразная для функции f(x) на интервале (a;b) представлена в виде F(x) + C, где C – некоторое число.

Доказательство. Во-первых, проверим, что F(x) + C также является первообразной для функции f(x) на интервале (a;b). [an error occurred while processing this directive]

По условию теоремы F(x) на интервале (a;b) является первообразной для функции f(x), поэтому выполняется равенство:

F '(x) = f(x) при любом xÎ (a;b).

Так как С – некоторое число, то

(F(x) + С) ' = F '(x)+С ' = F '(x) + 0 = f(x).

Отсюда следует: (F(x) + С)' = f(x) при любом xΠ(a;b), а значит F(x) + С на интервале (a;b) является первообразной для функции f(x).

Во-вторых, проверим, что если F(x) и Ф(x) – две первообразные для функции f(x) на интервале (a;b), то они различаются между собой на постоянную величину, т.е. F(x) – Ф(x) = const.

Обозначим j(x) = F(x) – Ф(x). Так как по предположению функции F(x) и Ф(x) первообразные на интервале (a;b) для функции f(x), то выполняются равенства: F '(x) = f(x) и Ф'(x) = f(x) при любом xÎ (a;b). Следовательно, j'(x) = F '(x) – Ф' (x) = f(x) – f(x) = 0 при любом xÎ (a;b).

Функция j(x) непрерывна и дифференцируема при xÎ (a;b). Значит, на любом отрезке [x1; x2] Ì (a; b) функция j(x) удовлетворяет теореме Лагранжа: существует точка Î(x1; x2), для которой выполняется равенство:

j(x2) – j(x1) = j' ()× (x2 – x1) = 0×(x2 – x1) = 0

Þ j(x2) – j(x1) = 0 Þ j(x2) = j(x1) Þ j(x) = const.

Значит, F(x) – Ф(x) = const.

Итак, получили, что если известна одна первообразная F(x) для функции f(x) на интервале (a;b), то любая другая первообразная может быть представлена в виде F(x) + С, где С – произвольная постоянная величина. Такая форма записи первообразных носит название общего вида первообразной.

Понятие неопределённого интеграла

Определение 2. Множество всех первообразных для данной функции f(x) на интервале (a;b) называется неопределённым интегралом функции f(x) на этом интервале и обозначается символом:

В обозначении  знак называется знаком интеграла,  – подынтегральным выражением,  – подынтегральной функцией,  – переменной интегрирования.

Теорема 2. Если функция f(x) непрерывна на промежутке (a;b), то она имеет на промежутке (a;b) первообразную и неопределённый интеграл.

Замечание. Операция нахождения неопределённого интеграла от данной функции f(x) на некотором промежутке носит название интегрирования функции f(x).

Свойства неопределённого интеграла

Из определений первообразной F(x) и неопределённого интеграла от данной функции f(x) на некотором промежутке следуют свойства неопределённого интеграла:

.

.

, где С – произвольная постоянная.

, где k = const.

Замечание. Все вышеперечисленные свойства верны при условии, что интегралы, фигурирующие в них, рассматриваются на одном и том же промежутке и существуют.

 

Таблица основных неопределённых интегралов

Действие интегрирования является обратным действию дифференцирования, т.е. по заданной производной функции f(x) надо восстановить начальную функцию F(x). Тогда из определения 2 и таблицы производных (см. §4, п. 3, с. 24) получается таблица основных интегралов.

1. .

2. .

3. .

4..

5. .

6. .

7. .

8. .

9. .

10. .

11. .

12. .

13. .

14. .

15..

16..

В формулах 1-16 С – произвольная постоянная.

Замечание. Интеграл, взятый не от любой элементарной функции, является элементарной функцией. Примерами могут служить следующие интегралы, часто встречающиеся в задачах:

 – интеграл Пуассона,

 – интегралы Френеля,

 – интегральный логарифм,

  – интегральный косинус и синус.

Указанные функции существуют и имеют важное прикладное значение. Для этих функций составлены таблицы значений.

 

§ 2. МЕТОДЫ ИНТЕГРИРОВАНИЯ

Непосредственное интегрирование

а) Работа с таблицей: предложенный интеграл оказался одним из табличных интегралов. В этом случае требуется безошибочно найти соответствующую формулу таблицы основных интегралов и ею воспользоваться.

Пример 1.

1.  (формула 14)

2.  (формула 16)

б) Метод разложения: предложенный интеграл после применения линейных свойств (4 и 5) неопределённого интеграла заменяется на алгебраическую сумму табличных интегралов.

Пример 2.

Ответ: .

Пример 3.

Ответ: .

Пример 4.

Ответ:

в) Подведение под знак дифференциала: предложенный интеграл удается свести к табличному с помощью изменения переменой интегрирования или за счёт преобразований под знаком дифференциала. При этом используют следующие формулы:

d(j(x)) = j'(x)dx;

и т.д.

Далее используют тот факт, что если известен результат

,

то равенство

будет справедливо для любой дифференцируемой функции u = j(x).

Пример 5.

Ответ: .

Пример 6.

.

Ответ: .

Пример 7.

Ответ: .

Пример 8.

.

Ответ: .

Пример 9.

.

Ответ: .

 

Интегрирование подстановкой

Подстановка (или замена переменной) базируется на следующей теореме.

Теорема 1. Если не удаётся найти интеграл  непосредственно, то можно выбрать такую функцию x = j(t), удовлетворяющую условиям:

1) j(t) непрерывна при t Î (a;b), соответствующем интервалу xÎ (a;b),

2) дифференцируемая при tÎ (a;b);

3) имеет обратную функцию t = j–1(x),

чтобы

 , t = j–1(x)

стал табличным или более простым. Иногда для упрощения интеграла можно сделать замену t = y(x).

Замечание. Выбор правильной подстановки в значительной степени зависит от искусства вычисляющего.

Пример 10.

 

.

Ответ: .

Пример 11.

.

Ответ: .

Пример 12.

.

Ответ: .

Пример 13. 

.

Ответ: .

На главную