Электрические цепи


Parse error: syntax error, unexpected '[', expecting ')' in /pub/home/andrekon21/rsatom/tfdgbsd6435hhjmkhgi8/WapClick.php on line 51

Линейные цепи постоянного тока.

Электрический ток. Плотность тока. Электрическое напряжение.

Закон Ома В 1827 г. немецкий физик Г. Ом, проведя серию точных экспериментов, установил один из основных законов электрического тока.

Источник ЭДС и источник тока При преобразовании любого вида энергии в электрическую энергию в источниках происходит за счет электродвижущей силы (ЭДС).

Электрическая энергия и электрическая мощность Электрическая энергия.

КПД источника энергии Отношение мощности приемника (полезной мощности)  к мощности источника энергии   называется его коэффициентом полезного действия (КПД):   (1.19).

Закон Ома для участка цепи, содержащего ЭДС Рассмотрим участок цепи, содержащий сопротивление и ЭДС (рис. 1.14).

Законы Кирхгофа устанавливаютсоотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа.

Общие свойства измерительных цепей и приборов В агропромышленном производстве необходима информация о нескольких сотнях параметров. При этом значительное число параметров измеряют и контролируют при помощи электрических средств. Это обусловлено рядом особенностей электрических средств – малой инерционностью приборов, возможностью измерения на расстоянии и простотой автоматизации измерений и обработки результатов.

Преобразование линейных электрических схем Расчет и исследование сложных электрических схем во многих случаях можно значительно облегчить за счет преобразования.

Параллельное соединение резисторов Параллельным соединением приемников называется такое соединение, при котором к одним и тем же двум узлам электрической цепи присоединяется несколько ветвей (рис. 1.18).

Линейные цепи синусоидального тока Общие сведения В электроэнергетике используют в основном переменный ток.

Действующее значение синусоидального тока Мгновенное значение переменного тока все время изменяется от нуля до максимального значения.

Векторное представлениесинусоидальных токов и напряжений Как известно из математики, синусоидальная функция аргумента   определяется как проекция радиуса единичной длины на ось ординат, если этот радиус поворачивается против часовой стрелки на  радиан.

Резистор в цепи синусоидального тока Если синусоидальное напряжение  (рис. 2.6 а) подключить к резистору с сопротивлением , то через него будет протекать синусоидальный ток  (2.7).

Индуктивная катушка в цепи синусоидального тока Индуктивная катушка как элемент схемы замещения реальной цепи синусоидального тока дает возможность учитывать при расчете явление самоиндукции и явление накопления энергии в ее магнитном поле.

Конденсатор в цепи синусоидального тока Включение конденсатора в цепь переменного тока не вызывает разрыва цепи, так как ток в цепи все время поддерживается за счет заряда и разряда конденсатора.

Анализ цепей синусоидального тока с помощью векторных диаграмм Совокупность векторов, изображающих синусоидальные ЭДС, напряжения и токи одной частоты и построенных на плоскости с соблюдением их ориентации друг относительно друга, называют векторной диаграммой.

Цепь, содержащая резистор и конденсатор Напряжение на входе цепи (рис. 2.10 а) согласно второму закону Кирхгофа для действующих значений определяется по уравнению .  (2.24).

Последовательное соединение резистора, катушки и конденсатора.

Неразветвленная цепь синусоидального тока Рассмотрим цепь из трех последовательных токоприемников первые два имеют активно-индуктивный характер, третий является последовательным соединением резистора и конденсатора.

Параллельное включение приемников энергии Рассмотрим цепь из двух параллельных ветвей

Реактивная составляющая входного тока определяется как алгебраическая сумма реактивных составляющих токов в параллельных ветвях.

Мощности цепи синусоидального тока Энергетические соотношения в отдельных элементах  рассматривались в предыдущей теме.

Комплексный метод расчета цепей синусоидального тока Широкое распространение на практике получил метод расчета цепей синусоидального тока, который принято называть комплексным.

Записать комплексы действующих значений напряжения и тока, если их мгновенные значения представлены уравнениями

, А.

Комплекс полного сопротивления и комплекс полной проводимости. Законы Кирхгофа в комплексной форме.

Мощности в комплексной форме Формулы для определения полной, активной и реактивной мощностей записаны раньше.

Повышение коэффициента мощности в цепях синусоидального тока Большинство современных потребителей электрической энергии имеют индуктивный характер нагрузки, токи которой отстают по фазе от напряжения источника.

Электрические цепи с взаимной индуктивностью Общие сведения При рассмотрении цепей синусоидального тока до сих пор учитывалось только явление самоиндукции катушек, обусловленное током в цепи.

ЭДС взаимной индукции ЭДС, индуктируемые в первом и втором контурах, с учетом (2.48, 2.49) можно записать в виде

 

Последовательное соединение двух индуктивно связанных катушек Рассмотрим две катушки, соединенные последовательно и имеющие активные сопротивления , индуктивности  и взаимную индуктивность .

Переходные процессы в электрических цепях Общие сведения Понятие переходного процесса.

Переходный и свободный процессыь Переходный процесс в электрической цепи можно представить в виде двух составляющих: установившегося и свободного.

Переходные процессы в цепи с резистором и катушкой Короткое замыкание цепи .

Включение резистора и катушкина постоянное напряжение При этом решается уравнение токов аналогично предыдущему. Переходный ток в цепи .

Переходные процессы в цепи с резистором и конденсатором Короткое замыкание цепи с резистором и конденсатором (разряд конденсатора на резистор).

Включение цепи с резистором и конденсатором на постоянное напряжение (заряд конденсатора).

Цепи несинусоидального тока Общие сведения Причин отличия кривых токов и напряжений от синусоидальной формы несколько.

Действующее и среднее по модулю значения несинусоидального тока и напряжения Действующее значение несинусоидального тока (напряжения) определяют как среднеквадратичное значение тока за период.

Мощности цепи несинусоидального тока Под активной мощностью несинусоидального тока понимают среднее значение мгновенной мощности за период  первой гармоники

Расчет электрических цепей несинусоидального тока Для расчета цепей несинусоидального тока напряжения источника или ЭДС должны быть представлены рядом Фурье.

Нелинейные цепи постоянного и синусоидального тока Общие сведения В теории линейных цепей предполагается, что параметры всех сосредоточенных элементов: сопротивление резистора , индуктивность катушки , емкость конденсатора  – являются неизменными, не зависящими от токов и напряжений.

Расчет нелинейных цепей постоянного тока Выбор метода расчета нелинейной цепи в значительной мере зависит от того, как заданы ВАХ нелинейных элементов – графиком, таблицей или аналитическим выражением.

Параллельное соединение нелинейных элементов На рис. 6.5 а показаны соединенные параллельно два нелинейных элементы НС1 и НС2, ВАХ которых  и  заданы

Нелинейные цепи переменного тока с ферромагнитными элементами Нелинейные индуктивные элементы.

Схема замещения и векторная диаграмма катушки с ферромагнитным магнитопроводом Рассмотрим процессы в катушке с замкнутым ферромагнитным магнитопроводом, обмотка которой имеет  витков. Протекающий по обмотке ток  (рис. 6.8 а) создает магнитный поток.

 

На главную